Neural substrates mediating human delay and trace fear conditioning.
نویسندگان
چکیده
Previous functional magnetic resonance imaging (fMRI) studies with human subjects have explored the neural substrates involved in forming associations in Pavlovian fear conditioning. Most of these studies used delay procedures, in which the conditioned stimulus (CS) and unconditioned stimulus (UCS) coterminate. Less is known about brain regions that support trace conditioning, a procedure in which an interval of time (trace interval) elapses between CS termination and UCS onset. Previous work suggests significant overlap in the neural circuitry supporting delay and trace fear conditioning, although trace conditioning requires recruitment of additional brain regions. In the present event-related fMRI study, skin conductance and continuous measures of UCS expectancy were recorded concurrently with whole-brain blood oxygenation level-dependent (BOLD) imaging during direct comparison of delay and trace discrimination learning. Significant activation was observed within the visual cortex for all CSs. Anterior cingulate and medial thalamic activity reflected associative learning common to both delay and trace procedures. Activations within the supplementary motor area (SMA), frontal operculum, middle frontal gyri, and inferior parietal lobule were specifically associated with trace interval processing. The hippocampus displayed BOLD signal increases early in training during all conditions; however, differences were observed in hippocampal response magnitude related to the accuracy of predicting UCS presentations. These results demonstrate overlapping patterns of activation within the anterior cingulate, medial thalamus, and visual cortex during delay and trace procedures, with additional recruitment of the hippocampus, SMA, frontal operculum, middle frontal gyrus, and inferior parietal lobule during trace conditioning. These data suggest that the hippocampus codes temporal information during trace conditioning, whereas brain regions supporting working memory processes maintain the CS-UCS representation during the trace interval.
منابع مشابه
Delay and trace fear conditioning in a complex virtual learning environment—neural substrates of extinction
Extinction is an important mechanism to inhibit initially acquired fear responses. There is growing evidence that the ventromedial prefrontal cortex (vmPFC) inhibits the amygdala and therefore plays an important role in the extinction of delay fear conditioning. To our knowledge, there is no evidence on the role of the prefrontal cortex in the extinction of trace conditioning up to now. Thus, w...
متن کاملNeural substrates underlying human delay and trace eyeblink conditioning.
Classical conditioning paradigms, such as trace conditioning, in which a silent period elapses between the offset of the conditioned stimulus (CS) and the delivery of the unconditioned stimulus (US), and delay conditioning, in which the CS and US coterminate, are widely used to study the neural substrates of associative learning. However, there are significant gaps in our knowledge of the neura...
متن کاملTiming of fear expression in trace and delay conditioning measured by fear-potentiated startle in rats.
In two experiments, the time course of the expression of fear in trace (hippocampus-dependent) versus delay (hippocampus-independent) conditioning was characterized with a high degree of temporal specificity using fear-potentiated startle. In experiment 1, groups of rats were given delay fear conditioning or trace fear conditioning with a 3- or 12-sec trace interval between conditioned stimulus...
متن کاملTrace but not delay fear conditioning requires attention and the anterior cingulate cortex.
Higher cognitive functions such as attention have been difficult to model in genetically tractable organisms. In humans, attention-distracting stimuli interfere with trace but not delay conditioning, two forms of associative learning. Attention has also been correlated with activation of anterior cingulate cortex (ACC), but its functional significance is unclear. Here we show that a visual dist...
متن کاملDouble Dissociation of Amygdala and Hippocampal Contributions to Trace and Delay Fear Conditioning
A key finding in studies of the neurobiology of learning memory is that the amygdala is critically involved in Pavlovian fear conditioning. This is well established in delay-cued and contextual fear conditioning; however, surprisingly little is known of the role of the amygdala in trace conditioning. Trace fear conditioning, in which the CS and US are separated in time by a trace interval, requ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of neuroscience : the official journal of the Society for Neuroscience
دوره 24 1 شماره
صفحات -
تاریخ انتشار 2004